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Abstract 

Background: Studies looking at air temperature (Ta) and birth outcomes are rare.  

Methods: We evaluated birth outcomes and average daily Ta during various prenatal exposure 

periods in Massachusetts (USA) using both traditional Ta stations and modeled address Ta. We 

used linear and logistic mixed models, and accelerated failure time models, to estimate 

associations between Ta and the following outcomes among live births > 22 weeks: term birth 

weight (≥ 37 weeks), low birth weight (LBW) (< 2,500g at term), gestational age and preterm 

delivery (PT) (< 37 weeks). Models were adjusted for individual level socioeconomic status, 

traffic density, PM2.5, random intercept for census tract and mothers health.  

Results: Predicted Ta during multiple time windows before birth was negatively associated with 

birth weight: average birth weight was 16.7g lower (95% CI: –29.7, –3.7) in association with an 

IQR increase (8.4°C) in Ta during the last trimester. Ta over the entire pregnancy was positively 

associated with PT (OR = 1.02; 95% CI: 1.00, 1.05) and LBW (OR = 1.04; 95% CI: 0.96, 1.13).  

Conclusions: Ta during pregnancy was associated with lower birth weight and shorter 

gestational age in our study population.  
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Background 

The increase in temperatures over the last century and continued increases in emissions of 

greenhouse gases has focused attention on the effects of increasing heat (Crowley 2000).  

Relatively few studies have examined associations between average daily ambient air 

temperature during pregnancy (Ta) and pregnancy outcomes. Most published work has focused 

on the relationship between preterm delivery and Ta with variable results.  One study reported an 

increased risk of very low-birth weight (LBW) delivery (birth weight < 1500 grams) with colder 

ambient temperature (Hartig and Catalano 2013). Another study found no association between 

preterm birth (birth at < 37 weeks completed gestation) and a variety of factors including 

temperature, humidity and barometric pressure (Lee et al. 2008). In contrast, two studies have 

reported that preterm delivery was associated with increased temperature and humidity (Basu et 

al. 2010; Lajinian et al. 1997). A study conducted in Australia reported that weekly temperature 

was positively associated with preterm birth < 37 weeks and stillbirth < 36 weeks gestation 

(Strand et al. 2012). Schifano and colleagues reported that maximum apparent temperature in the 

two days preceding delivery was associated with preterm delivery in Rome during the warm 

season using models adjusted for air pollution, socioeconomic status and mothers health 

(Schifano et al. 2013).  

It is important to determine if ambient temperature indeed affect the length of gestation and birth 

weight at delivery, as low-birth weight delivery has significant short and long-term health 

implications. Preterm delivery (delivery at < 37 weeks gestation), early term delivery (delivery at 

37-38 weeks gestation) and in utero growth restriction (IUGR, or delivery at birth weight < 10th 

percentile for gestational age) also contribute to perinatal morbidity and mortality (Harding and 

Maritz 2012; McCormick 1985; Moster et al. 2008; Sengupta et al. 2013). Evidence suggests that 
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IUGR birth in particular may have long-term implications for childhood and adult health (Bilbo 

and Schwarz 2009; Demicheva and Crispi 2013; Gluckman and Hanson 2004; Harding and 

Maritz 2012; Sarr et al. 2012; Vos et al. 2006). The pathogenesis of preterm, early term and 

IUGR delivery is multifactorial. Inflammation, infection and immune dysregulation may cause 

preterm labor and early delivery; abnormalities of placental formation and function may result in 

preterm, early term and IUGR delivery due to placental bleeding, fetal distress and pre-

eclampsia; and genetic variation and multiple gestation contributes to each of these etiologies 

(Gonçalves et al. 2002; Han et al. 2011; Leber et al. 2010; Muglia and Katz 2010; Saito et al. 

2010; Wong and Grobman 2011). Social stressors have also been studied as causes of preterm, 

early term and IUGR delivery, due to variation in the rate of low-birth weight delivery among 

different racial, ethnic and socioeconomic groups (Kuzawa and Thayer 2011; Wadhwa et al. 

2011). Environmental stressors such as changes in ambient air temperature may also contribute 

to these birth outcomes. A recent study by Dadvand and colleagues (Dadvand et al. 2014) 

examined the association of term low birth weight with residential proximity to major roads and 

surface temperature. They showed that living within 200 m of major roads was associated with a 

increase in term LBW risk (OR = 1.46; 95% CI: 1.05, 2.04). They also found that surface 

temperature was associated with an increase in term LBW risk (OR = 1.18; 95% CI: 0.95, 1.45).  

The conflicting results published to date on relationship of ambient air temperature to preterm 

and/or low birth weight delivery may be due to variations in temperature measurement and 

modeling. Air temperature stations have limited spatial coverage, particularly in less urban areas, 

and airport monitors may not reflect the urban heat island adequately.  Since temperature can 

vary greatly both spatially and temporally, the use of air temperature stations can introduce 

considerable measurement error (and downward bias in the case of heat islands) reducing their 
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utility for epidemiological studies on the health effects of extreme temperature and climate 

change. Previous studies examining the association of preterm and low-birth weight delivery and 

Ta have typically used available monitors in the study area. This introduces exposure error and 

likely biases the effect estimates downward (Armstrong 1998; Zeger et al. 2000). Furthermore, 

lack of spatially resolved daily Ta concentration data restricts these studies to populations 

surrounding monitoring sites, which may not be representative of the population as a whole.  

The lack of high resolution continuous spatio-temporal Ta data resulted in our group developing 

a method to predict 24h mean Ta at a very fine spatial resolution (Kloog et al. 2012a, 2014). 

Specifically, we developed new methodologies to predict daily Ta, based on land use regression 

plus a daily calibration of Ta ground measurements and MODIS (Moderate Resolution Imaging 

Spectroradiometer, http://modis.gsfc.nasa.gov/data/) surface temperature (Ts) over a large area 

with varying geographical characteristics (covering the entire Northeast and Mid-Atlantic areas 

of the USA) at a 1x1 km spatial resolution. We incorporated land use, and meteorological 

variables to predict daily 24h mean Ta for grid cells even when satellite Ts measures are not 

available. A similar model has previously been developed for PM2.5 on the same resolution 

(Kloog et al. 2012c). 

We used our Ta prediction data to study associations between Ta and live birth outcomes among 

singleton births in Massachusetts during 2000–2008, including term birth weight, low birth 

weight (< 2500 g) among term births, preterm birth (< 37 weeks), and gestational age.  



6 
 

Methods 

Study domain and population 

In the analysis we included the entire state of Massachusetts (Figure 1). The study population 

included all live singleton births >22 weeks of gestation in Massachusetts from January 1, 2000 

through December 31, 2008 (Figure 1). Birth data and the latitude and longitude of each eligible 

address at birth were provided by the Massachusetts Birth Registry (MBR, 

http://www.mass.gov/eohhs/gov/departments/dph/programs/admin/dmoa/vitals/). The term birth 

weight and low birth weight (< 2,500 g) analyses included 453,658 births ≥ 37 weeks gestational 

age, and the gestational age and preterm birth (<37 weeks) analyses included 473,977 births. The 

study and the use of birth data was approved by the Massachusetts Department of Public Health 

and the human subjects committee of the Harvard School of Public Health. Informed consent 

was not required because we used anonymous administrative data.   

Exposure data 

For exposure data we used three different indicators: predicted 1x1 km Ta from our model, 

ground Ta from the nearest National Climatic Data Center (NCDC, 

http://www7.ncdc.noaa.gov/CDO/) monitoring stations, and residence-specific cumulative traffic 

density. We describe each metric in more detail below.  

Predicted Air temperature - Ta exposure data were generated by the previously mentioned Ta 

prediction model (Kloog et al. 2014) In these prediction models we used mixed models to first 

calibrate Ts and Ta measurements, regressing Ta measurements against day-specific random 

intercepts, fixed and random Ts slopes and several spatial and temporal predictors (NDVI-

Normalized difference vegetation index, percent urban and elevation). Then to make use of the 
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ability of neighboring cells to fill in the cells with missing Ts values, we regressed the Ta 

predicted from the first mixed effects model against the mean of the Ta measurements on that 

day from monitors within 60 km, separately for each grid cell. We used ten-fold out of sample 

cross validation (CV) to validate our predictions at monitor locations at each step. We randomly 

divide our data into 90 and 10 percent splits ten times. We predict for the 10% data sets using the 

model fitted from the remaining 90% of the data. We then report these computed R2 values. To 

test our results for bias we regress the measured Ta values against the predicted values in each 

site on each day. We estimated the model prediction precision by taking the square root of the 

mean squared prediction errors (RMSPE). Mean out-of-sample R2 values for days with and 

without Ts data were 0.947 and 0.940, respectively, indicating excellent model performance. 

Mean out-of-sample temporal and spatial R2 values also were high (0.956 and 0.832, 

respectively) (Kloog et al. 2014). 

 To estimate Ta exposure we linked each mother's residence at the time of delivery to its 

corresponding grid cell (Figure 2). Daily Ta exposures were calculated for the day of birth; the 

day before birth; moving average values for 3 days, 7 days, 14 days, 30 days, the last trimester; 

and the entire pregnancy. 

PM2.5- PM2.5 was estimated on a 1x1 km grid from the same MODIS satellite, using daily 

measures of Aerosol Optical Depth using a similar methodology (daily calibration, land use and 

meteorology) as the temperature model. Further details have been published previously 

(Chudnovsky et al. 2014; Kloog et al. 2012c). Because warm days are often more polluted, PM2.5 

was included as a covariate with the same time periods used to classify Ta. 
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Monitor Air temperature - Daily data for monitor Ta across Massachusetts were obtained from 

the NCDC. NCDC is a government agency and has been collecting meteorological data for close 

to a century now. Ta is measured at a reference height of 2m above the ground in most weather 

stations (NCDC 2010). . 

Cumulative traffic density- Traffic emissions have been associated with birth outcomes in many 

previous studies (Gryparis et al. 2009; Zeka et al. 2006 ). Therefore, Massachusetts road data 

(average daily traffic-ADT) were obtained from the Massachusetts Department of Transportation 

(MassDOT,http://www.massdot.state.ma.us/) 2002 Road inventory. These data are based on 

automatic vehicle counts on major highways, periodic counts on other major roads and estimated 

counts for all other roads. (Kloog et al. 2012b). Each 200x200 grid was assigned a value for 

normalized cumulative ADT (CADT) based on average daily traffic on all road segments within 

100 m of the center of each grid, where CADT = Σ (ADT*road segment length). Each birth 

address was assigned the average CADT value for the four grids with center points closest to the 

address, using bilinear interpolation . 

Based on previous literature on the potential risk factors associated with low birth weight (Kloog 

et al. 2012b; Zeka et al. 2006, 2008) we included the following individual and contextual 

covariates: 

Percent of open space- The percent of open space data was obtained from the office of 

geographic information Commonwealth of Massachusetts, information technology division 

MassGIS (MassGIS-EOEA 2006). The subset of the open space designated for recreation and 

conservation was intersected with 2000 Census tract boundaries (also downloaded from 
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MassGIS) using ArcGIS© 10.1. The percent of each census tract that was open space was then 

calculated and assigned to birth addresses belonging to that tract. 

Socioeconomic indicators- Socioeconomic data at the Individual level were obtained from the 

Massachusetts birth registry. Information included the mother's race/ethnicity (classified as 

Hispanic; non-Hispanic white, African American, and Asian; and other [all other ethnic groups]), 

mother’s years of education, and the Kotelchuck index of adequacy of prenatal care utilization 

(APNCU). APNCU is based on the number and the time of start of mother's prenatal visits 

(Alexander and Kotelchuck 1996) and was recoded into: inadequate (<50% of expected visits 

used); intermediate (50–79%); appropriate (80–109%); and appropriate plus (≥110%). We 

categorized Education of the mother as: no high school (<9 years of educational attainment), 

some high school 9-12 years of educational attainment); some college (13–15 years); and college 

or postgraduate (≥ 16 years). 

Median income- Data was obtained from the United States Census Bureau 1999 median 

household income (USCB 2000) for every census tract in the study area, and assigned these to 

births with an address located within that tract. 

 Individual-level covariates: maternal age, parity, gestational age (calculated by the maternal 

recall of last menstrual period), amount of cigarettes smoked per day during and before 

pregnancy, chronic conditions of mother or conditions of pregnancy (lung disease, pregnancy-

induced hypertension, gestational diabetes and non-gestational diabetes all modeled separately as 

single variables), previous occurrence of a preterm birth, whether the mother ever had a previous 

infant weighing 4000 grams or more and sex of infant were all obtained through the 

Massachusetts Birth Registry through the index child’s birth certificate. 
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Statistical methods 

To identify factors affecting birth weight we used linear mixed regression models to estimate 

associations between both monitor and modeled Ta during different time windows and term birth 

weight, and logistic mixed regression to estimate associations with preterm birth (< 37 weeks) 

and low birth weight (< 2,500 g, LBW) (Kloog et al. 2012b; Zeka et al. 2008). Seasonality was 

controlled using sine and cosine terms with a period of 365.24 days. Both sine and cosine were 

included to allow the regression to estimate both the amplitude of the seasonal cycle and its 

phase. A random intercept for census tract was used to capture unmeasured similarities in 

persons residing in the same neighborhood. 

Specifically we fit the following models:  

BWij =(α + uj)  + β1Tai +β2PMi + γXi + eij  (uj) ~ N[0,σu
2]   and    [1] 

 
Logit(PTij/LBWij = 1|X) =  (α + uj)  + β1Tai +β2PMi + γXi +eij  (uj) ~ N[0,σu

2] [2] 
 

where BWij, PTij, and LBWij  represent birth weight, preterm, and LBW, respectively, for the ith 

subject in census tract j, α and uj are the fixed and random (tract-specific) intercepts, 

respectively, γXi denote the set of variables included in the model which include: predicted 

ambient air temperature, predicted ambient PM2.5, cumulative traffic density, percent of open 

spaces, age of mother, median income, gestational age, chronic conditions of mother or 

conditions of pregnancy (lung disease, hypertension, gestational diabetes or non-gestational 

diabetes), parity, previous infant weighting 4000 grams and sex of infant, sine and cosine 

(controlling for seasonality), APNCU (as a categorical variable), mothers race (as a categorical 
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variable), mothers education (as a categorical variable) and previous preterm occurrences.  eij is 

the error term and finally, 𝜎!! is the variance of the tract random effects, and ejj ~ N[0, σ2].  

We estimated associations between Ta during different time windows and gestational age using 

an accelerated failure time model (AFT). 

Such models are a form of survival analysis that model the survival time directly instead of the 

hazard.  Gestational age is used as a continuous outcome in the AFT model. The log-linear form 

of the AFT model with respect to time (T) is given by 

logTi = µ + α1X1i + α2X2i + ... + αpXpi + σεi       [3] 

where µ is the intercept, σ is a scale parameter and εi is a random variable, assumed to have a 

particular distribution. We adopted a gamma distribution for εi, which can flexibly model a wide 

range of distributions for the failure times (births). A two-sided p-value < 0.05 was considered 

statistically significant.  

We also ran analyses stratified on subject residence < 30 km or ≥ 30 km of a Ta monitor (as 

proxy indicators of urban and rural residences, respectively).  Statistical analyses were performed 

in SAS (version 9.3; SAS Institute Inc., Cary, NC, USA) and R (R Foundation for Statistical 

Computing, Vienna, Austria). Cases with missing data were excluded from the analysis. An 

alpha level of 0.05 indicates statistical significance. 

Results 

Descriptive statistics are presented in Table 1. Of the 450,407 births included in all births in our 

analyses, 50% of the births were male, 72% were white, only 8% had maternal age below 20 for 

full term births and 21% of the mothers had more than 15 years of education. Mean birth weight 
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was 3395 g ± 502 among term births and 3391 g ± 511 among all births. Table 2 contains a 

summary of the predicted Ta and traffic exposure across all grid cells in the analysis. Table 3 

presents the IQR for each time window used in the analysis. Table 4 presents the results from the 

regression across all exposure periods tested for both the predicted exposures and monitor 

exposure analyses. Using our spatially and temporal resolved predicted Ta as exposure resulted 

in all exposure windows showing decreased birth weights with increased Ta with almost all 

exposure windows showing statistical significance. We observed a pattern of increasing impact 

of an interquartile range (IQR) change in temperature exposure with increasing averaging time 

up until the last trimester of gestation average. The effect for the full pregnancy was smaller than 

that of the last trimester moving average. 

Term birth weights were negatively associated with predicted Ta in almost all exposure time 

windows (Table 4). In general, the average estimated difference in term birth weight with an 

8.4ºC (IQR) increment in Ta increased as the averaging time increased up to the last trimester 

before birth, whereas associations were weaker for average exposure over the entire pregnancy. 

For example, average term birth weight was 8.9 g lower (95% CI: –16.2, –1.5) in association 

with an 9.0ºC IQR increase in Ta during the seven days before birth, 16.6 g lower (95% CI: –

27.4, –5.9) and 16.7g lower (95% CI: –29.7, –3.7) for the 30 days and last trimester before birth 

respectively (IQR  increase of 9.1ºC and 8.4ºC) and 5.0 g lower (95% CI: –7.8, –2.3) with an 

IQR increase of 2.7ºC  in average Ta over the entire pregnancy. 

The OR for low term birth weight with a 2.7ºC increase in model-based Ta over the entire 

pregnancy was 1.04 (95% CI: 0.96, 1.13), compared with 1.07 (95% CI: 0.87, 1.27) for monitor-

based Ta (Table 5). The OR for preterm birth with a 2.7ºC increase in model-based Ta over the 
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entire pregnancy was 1.04 (95% CI: 0.96, 1.13) compared with 1.02 (95% CI: 1.00, 1.05) for 

monitor-based Ta. 

A 2.7ºC increase in Ta over the entire pregnancy was associated with a 0.26% decrease in 

gestational age (95% CI: –0.28, –0.25%), while A 8.4ºC increase in Ta over the last trimester 

before birth was associated with a 0.15% decrease in gestational age (95% CI:  –0. 26, 0.05%) 

(Table 5). For monitor-based Ta the results were significant as well but showed an increase in 

gestational age: a 0.89% increase in gestational age (95% CI: 0.88, 0.90%) for full term birth and 

0.37% increase in gestational age (95% CI: 0.37, 0.38%) for the last trimester. 

The association between an IQR increase in predicted Ta during the entire pregnancy and birth 

weight was stronger among births to mothers with residences in “urban” areas (<30 km from a 

monitor, 8.1 g lower; 95% CI: –12.2, –4.0) compared with mothers residing in “rural” areas (>30 

km from a monitor, 4.2 g lower; 95% CI: –8.4, 0.1), though the differences were not statistically 

significant (interaction p-value = 0.26). 

Discussion 

In the presented study we estimated the associations of Ta on birth outcomes in a study of 

singleton births in Massachusetts counties between 2000 and 2008. Using a model enhanced with 

satellite remote sensing we were able to assign exposure to all subjects with less spatial and 

temporal error (compared to using a closest monitor approach), regardless of the distance 

between a participant’s residence and the closest Ta monitor. 

 We found a consistent negative association between Ta and birth weight for infants who were 

born full term after adjusting for other potential risk factors such as previous and current 

mother’s health conditions, socioeconomic factors and physical environment risk factors such as 
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traffic density in surrounding grid cells. The association with Ta over the entire pregnancy was 

stronger in more urban areas (<30 km from a monitor) than in more rural areas (≥ 30 km from a 

monitor), though the difference was not statistically significant. In contrast to the associations 

found with our modeled predicted Ta, associations between birth weight and Ta measured at the 

nearest ground monitor stations were close to the null, suggesting that predicted Ta classified 

exposure more accurately than monitor-based estimates. Interestingly, for the AFT analysis we 

found that an increase in Ta over both periods were associated with a decrease in gestational age 

yet in the monitored Ta analysis this associations were significantly associated with an increase 

of  gestational age. These finding need to be further explored in future studies. 

A key advantage of the presented study is the exposure assignment. Since our model allows us to 

predict temporally and spatially resolved Ta we can assign daily Ta exposure to the entire study 

population, avoiding potential selection bias that would yield a non-representative sample. It also 

captures the urban heat island effect, as shown in Figure 2. In addition we account for small area 

measures of potential confounders at a 1x1 km spatial resolution such as individual and census 

measures of SES, and medical history. 

The literature on the potential impact of Ta on birth weight and its determinants are still far and 

few. Increased Ta may affect birth weight through direct or indirect means. The causes of 

preterm birth and low birth weight are largely unknown, but are likely to be a complex mix of 

genetic, behavioral, socioeconomic and environmental factors (Strand et al. 2011). Heat stress 

during spells of high Ta has been suspected as a cause of premature birth resulting in high 

prevalence of low birth weight (Basu et al. 2010). Pregnant women may be more susceptible to 

changes in temperature due to the extra physical and mental strain, and may be at a greater risk 

of heat stress because of multiple factors such as: increased fat deposition; the ratio of surface 



15 
 

area to body mass which decreases, reducing the capacity to lose heat by sweating, weight gain 

which increases heat production and the fetus adding to the maternal heat stress by adding its 

own bodies composition and its own metabolic rate (Wells and Cole 2002). Three studies have 

reported positive associations between preterm birth and Ta (Flouris et al. 2009; Lajinian et al. 

1997; Yackerson et al. 2008) but two other studies did not report an association (Lee et al. 2008; 

Porter et al. 1999).  

Race, ethnicity, education and other SES factors are often clustered spatially and can act as 

potential confounders since they do not vary by time but do vary by space. We use a random-

effects model with a random intercept for FIPS code while controlling for seasonality to reduce 

bias as well. 

There are several limitations in the present study. First, the spatial resolution of the exposures 

was 1x1 km. As satellite remote sensing evolves and progresses, higher spatial resolution data 

should become available in the coming years, which will further reduce exposure error. Such 

increased resolution should enable us to more precisely estimate daily intra urban exposures and 

how these vary across spatial locations. Other limitations include the lack of some health and 

personal level data such as maternal weight, BMI, differences across different locations in 

physical activity, pollen exposure etc. that was not available. We also lacked data on indoor 

temperature exposure and information on air conditioning use in households. Finally, another 

limitation, which also should be mentioned, is the lack of information on road noise as in some 

recent pregnancy outcome studies (Dadvand et al. 2014; Gehring et al. 2014). 

In summary, our findings suggest that higher Ta during pregnancy may be a risk factor for lower 

birth weight. 
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Table 1. Characteristics of live births in Massachusetts during the 9 year period 2000–2008 for both the full 

term analysis and AFT models. 

 Term births All births ≥ 22 weeks 
Characteristic % All births 

(N) 
Mean Birth 
Weight (g) 

± SD 

Missing 
 

% All births 
(N) 

Mean Birth 
Weight (g) 

± SD 

Missing 
 

Overall (450,407) 3395 ± 502 3251 (462,400) 3391 ± 511 3381 
Maternal race   0   0 
White 72 (323,819) 3443 ± 496  72 (332,383) 3440 ± 503  
African-American 7 (33,775) 3257 ± 520  8 (34,803) 3246 ± 540  
Hispanic 13 (60,339) 3297 ± 496  13 (62,029) 3313 ± 522  
Asian 7 (31,491) 3234 ± 463  7 (32,174) 3229 ± 473  
Other 0.3 (983) 3347 ± 505  0.3 (1011) 3339 ± 527  
Maternal Education (years)   1699   1748 
≤ 8 3 (12,718) 3293 ± 492  3 (13,121) 3288 ± 501  
>8-12 34 (154,723) 3319 ± 511  34 (159,307) 3313 ± 523  
13-15 42 (187,792) 3407 ± 503  42 (192,246) 3455 ± 491  
≥15 21 (94,994) 3457 ± 485  21 (97,726) 3403 ± 512  
Maternal age (years)   1   1 
≤ 20 5 (22,900) 3219 ± 489  5 (23,618) 3211 ± 505  
20-29 33 (146,668) 3335 ± 518  33 (150,538) 3330 ± 504  
30-34 32 (142,033) 3427 ± 493  32 (145,720) 3424 ± 500  
35-39 24 (106,542) 3459 ± 518  24 (109,365) 3455 ± 512  
>39 7 (32,244) 3434 ± 518  7 (33,159) 3431 ± 530  
Maternal chronic conditions       
Gestational diabetes 3 (15,047) 3419 ± 633 1342 3 (15,388) 3407 ± 562 1420 
Non-gestational diabetes 1 (3128) 3419 ± 633 1342 1 (3219) 3411 ± 649 1420 
Previous infant ≤ 4 kg 1 (3503) 3936 ± 508 1342 1 (3594) 3937 ± 511 1420 
Hypertension 3 (12,721) 3258 ± 567 1342 3 (13,038) 3253 ± 575 1420 
Lung disease 3 (14,535) 3295 ± 531 1342 3 (14,906) 3287 ± 547 1420 
Previous preterm birth 1 (4331) 3080 ± 576 1342 1 (4475) 3070 ± 593 1420 
Gestational age (weeks) (450,407) 39.0 ± 1.83 0 (462,400) 38.97 ± 1.95 0 
APNCU   0   0 
1 (Inadequate) 9 (40,427) 3309 ± 507  9 (41,692) 3304 ± 518  
2 (intermediate) 8 (35,519) 3438 ± 476  8 (36,559) 3438 ± 477  
3 (appropriate) 48 (215,188) 3465 ± 463  48 (222,638) 3465 ± 465  
4 (appropriate plus) 35 (159,273) 3312 ± 539  35 (163,511)  3304 ± 555  
Mean household Income (453,658) 52,313 ± 21,566 0 (462,400) 52,296 ± 21,573 0 
Sex   0   0 
Male 50 (226,589) 3452 ± 511  50 (232,720) 3447 ± 521  
Female 50 (223,818) 3337 ± 486  50 (229,680) 3334 ± 494  
Parity (number of births) (450,407) 2 ± 2.7 0 (462,400) 2 ± 2.7 0 
Cigarettes per day during 
pregnancy (smokers) 

(450,407) 0.6 ± 2.7 642 (462,400) 0.7 ± 2.7 656 

Cigarettes per day before 
pregnancy (smokers) 

(450,407) 1.8 ± 5.1 616 (462,400) 1.8 ± 5.1 631 
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 Term births All births ≥ 22 weeks 
Characteristic % All births 

(N) 
Mean Birth 
Weight (g) 

± SD 

Missing 
 

% All births 
(N) 

Mean Birth 
Weight (g) 

± SD 

Missing 
 

Cumulative traffic density 
(average daily traffic counts) 

(450,407) 39.4 ± 23.5 0 (462,400) 39.2 ± 23.2 0 

Elevation (meters) (450,407) 59.9 ± 68.3 0 (462,400) 60 ± 68.4 0 
Percent of open space (450,407) 12.0 ± 11.1 0 (462,400) 12.0 ± 11.1 0 
Season of Birth   0   0 
Winter 22 (97,982) 3379 ± 504  24 (108,896) 3378 ± 514  
Spring 26 (117,669) 3402 ± 502  26 (118,182) 3399 ± 512  
Summer 27 (121,629) 3399 ± 501  26 (121,917) 3396 ± 510  
Fall 25 (113,127) 3393 ± 500  25 (113,405) 3390 ± 508  
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Table 2. Descriptive statistics for daily air temperature, daily PM2.5 exposure and traffic density 

across mother’s residences (397,698) in Massachusetts between 2000–2008. 

Covariate Mean Median SD Min Max IQR 25th 
percentile 

75th 
percentile 

Days of 
data 

available 
Predicted Air 
temperature (C°) 

11.3 11.4 5.6 -12.1 35.49 8.9 6.9 15.8 3285 

Cumulative traffic 
density (daily 
traffic*length) 

1309 702 2076 0 29,000 1352 258 1611 3285 

Predicted PM2.5  (µg/m3) 10.9 9.27 5.9 0.2 56.9 6.8 6.7 13.5 3285 
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Table 3. IQR (interquartile range) values for each time window used in the study. 

Exposure period IQR (ºC) 
Day of birth 8.9 
One day prior to birth 8.9 
Moving average of 3 days prior to birth 9.0 
Last week (7 days prior to birth) 9.0 
Last 2 weeks (14 days prior to birth) 9.0 
Last month (30 days prior to birth) 9.1 
Last Trimester 8.4 
Entire pregnancy 2.7 
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Table 4. The adjusted association between a one interquartile range increase in air temperature 

(C°) and PM2.5 and birth weight for full term births at various exposure periods (n=453,658).  

Exposure period Predicted Air 
temperature (C°) 

β  (95% CI) 

Closest monitor 
temperature (C°) 

β  (95% CI) 
Day of birth -3.6 (-8.1, 0.9) 0.6 (-4.8, 6.0) 
One day prior to birth -4.4 (-9.6, 0.7) 1.8 (-3.8, 7.5) 
Moving average of 3 days prior to birth -4.1 (-9.8, 1.5) 3.0 (-2.8, 8.8) 
Last week (7 days prior to birth) -8.9 (-16.2, -1.5) 1.5 (-4.6, 7.7) 
Last 2 weeks (14 days prior to birth) -15.5 (-24.2, -6.8) 0.5 (-6.4, 7.3) 
Last month (30 days prior to birth) -16.6 (-27.4, -5.9) 2.0 (-6.3, 10.2) 
Last Trimester -16.7 (-29.7, -3.7) -8.0 (-20.3, 4.3) 
Entire pregnancy -5.0 (-7.8, -2.3) 2.6 (-17.1, 22.4) 
All models adjusted for:  Predicted Air temperature, Predicted PM2.5, cumulative traffic density, percent 

of open spaces, age of mother, gestational age, chronic conditions of mother or conditions of pregnancy 

(lung disease, hypertension, gestational diabetes or non-gestational diabetes), parity, previous infant 

weighting 4000 grams and sex of infant, sine and cosine (controlling for seasonality), APNCU (as a 

categorical variable), mothers race (as a categorical variable), mothers education (as a categorical 

variable)  and previous preterm occurrences 
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Table 5. Accelerated failure time model (AFT) results on the relationship between gestational 
age and Ta (n=473,977) and logistic model results on preterm (n=473,977) and low birth weight 
outcomes (n=453,658).  

Outcome and exposure time period Predicted Air 
temperature (C°) 

Closest monitor 
temperature (C°) 

AFT model (Gestational period) 
Beta (95% CI) 

  

Last Trimester -0.0015 (-0.0026, 0.0005) 0.0037 (0.0037, 0.0038) 
Entire pregnancy -0.0026 (-0.0028, -0.0025) 0.0089 (0.0088, 0.0090) 
Preterm births (< 37 weeks) [OR (95% CI)]   
Entire pregnancy 1.02 (1.00, 1.05)  1.07 (0.87, 1.27) 
Low birth weight (< 2,500 g) [OR (95% CI)]   
Entire pregnancy 1.04 (0.96, 1.13)  1.02 (0.45, 2.30) 
All models adjusted for:  Predicted Air temperature, Predicted PM2.5, cumulative traffic density, percent 

of open spaces, age of mother, chronic conditions of mother or conditions of pregnancy (lung disease, 

hypertension, gestational diabetes or non-gestational diabetes), parity, previous infant weighting 4000 

grams and sex of infant, sine and cosine (controlling for seasonality), APNCU (as a categorical variable), 

mothers race (as a categorical variable), mothers education (as a categorical variable)  and previous 

preterm occurrences. 
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Figure Legends 

Figure 1. Map of the study area showing the location of a sample subset of mothers (randomly 

selected with the QGIS tool “random points”), the location of the ground air monitoring stations 

and the areas within and outside 30 km of an air temperature station (‘urban’ vs. ‘rural’ areas). 

Figure 2. Map of the study area showing the residential location of a subset of mothers over the 

daily predicted air temperature (C°) 1x1 km grid averaged for the entire year of 2005. 
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Figure 1. 
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Figure 2. 

 


